

Utilising computational design tools to simulate novel thermoelectric systems for energy recovery in steel making processes 18/09/2023

<u>M. Phillips¹, U. Chiarotti², V. Moroli², F. Mintus³, S. Bosi⁴, M. Padovan⁴, S. Spagnul⁴, D. Gaspardo⁵, M. Chini⁵, A Viotto⁵, L. Bianco⁵, T. Bause⁶, P. Fritella⁶, N. Katenbrink⁷, G Min¹</u>

- ^{1.} School of Engineering, Cardiff University UK
- ^{2.} Rina Consulting Centro Sviluppo Materiali SpA, Rome Italy,
- ³ VDEh-Betriebsforschungsinstitut GmbH, Germany

```
<sup>4</sup> Ergolines lab s.r.l., Italy
```

- ⁵ Ferriere Nord S.p.A, Italy
- ⁶ ESF Elbe-Stahlwerke Feralpi GmbH, Riesa

D, Germany

⁷ QuickOhm Kupper & Co GMBH, Germany

YUICK-OHM

Steel making process and the inTEGrated project

Prototype A design

Objectives

- Extract heat from the EAF off-gas cooling system and convert to electrical energy
- Develop a TEG which is compact and modular which can fit around existing systems

Square section thermoelectric TEG

- Square section aluminum tube (40 mm wide and 300 mm long)
- 6 TEMs on each side (40 x 40 mm) → a total of 24 TEMs
- TEMs are inserted into second square tube where cold water can flow through heat sinks (black)

System modelling and simulations

- Commercial TE modules experimentally tested to determine electrical and thermal properties
- TE Material properties k, σ and α taken from data source with similar operating range
- Thermal and electrical contact resistance parameters fitted to IV curves using COMSOL
- COMSOL output load data compared with experiment
- Module models build into TEG COMSOL model

Prototype A - Square cross-sectional area COMSOL model

Prototype A – Simulation results

- ΔT ~ 62 K, each module should output
 0.81 W giving 19.4 W for the TEG
- TEG generates ~ 12.3 W at a flow rate of 17 Lpm
- ~63 % of theoretical power obtained

Prototype A simulations with different water flow conditions

Installed Prototype A testing

Inlet temperature vs. time (1 sample/second)

Electrical power vs. time (1 sample/second)

Slight difference between model and experiment

Prototype A – Installation and long-term trials of TEG tubes at Ferriere Nord steelworks

Four Prototype A designs to simulate

Ο.

-10

E

60 50 40 30 20

200

ECT 2023

100

Prototype B design

Objectives

- Capture radiative heat from cooling steel wire rod as it moves along a conveyer
- Develop systems capable of protecting TEG from over-heating due to temperature fluctuations

Heat pipe protected TEG

- Heat absorber made from copper plate
- Heat pipes used to place the TE modules at a distance from the absorber plate
- Two TE modules per absorber plate clamped either side of the heat pipes
- Heat pipe 'dry-out' at 250 °C

TEG

ECT 2023

Prototype B design optimisation

ECT 2023

Absorber area	Area/cm ²	Absorbers in prototype	Total modules in prototype	Total absorber area of prototype
8x8 cm ²	64 cm ²	6x6	72	2304cm ²
9.6x9.6 cm ²	92 cm ²	5x5	50	2304cm ²
12x12 cm ²	144 cm ²	4x4	32	2304cm ²
16x16 cm ²	256 cm ²	3x3	18	2304cm ²
24x24 cm ²	576 cm ²	2x2	8	2304cm ²

Prototype B design optimisation

System modelling and simulations

Prototype B – Lab testing of 8 module system

Installed Prototype B testing

Long-term test

- System is fully operational in situ.
- The performance varies with the highly discontinuous wire production process
- Maximum measured <u>hot side temperature</u> of the TEMs: <u>200 °C</u>
- Maximum measured power production of the entire 32 module prototype: <u>160 W</u>
- Increase of cooling water temperature approx. 4 – 5 °C → heat loss by the cooling water of approx. 5 kW.

ECT 2023

• Cold-side efficiency max. 2.5 – 3.0 %

Summary

- Two prototypes developed for waste heat recovery using TE modules:
 - Prototype A for waste heat recovery from cooling water
 - Prototype B for recovery of thermal radiation
- COMSOL models developed to simulate the performance of the two prototypes and used to predict performance under different operating conditions
- Prototypes tested in laboratory and installed in an industrial setting, collecting long term data samples
- Data samples input into COMSOL models to further optimise the design

Thank you for listening

For further information please visit

www.integrated-euproject.eu

